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Abstract

Following previous studies for enclosures of aspect ratios 4 and 1, direct numerical two-dimensional simulations
were conducted for the free convection flow of a low-Prandtl number fluid with internal heat generation in a shallow
cavity (AR =0.25) having adiabatic top and bottom walls and isothermal side walls. The Prandtl number was 0.0321
and the Grashof number, Gr, based on power density and cavity width, ranged from 10° to 10'!. The flow was steady
for Gr up to 3 x 10°, time-periodic for Gr ~ 10'° and chaotic for Gr = 3 x 10'°. In both the steady and the periodic
regimes, the flow was instantaneously symmetric with respect to the vertical centreline of the enclosure; in the chaotic
regime the instantaneous flow was asymmetric, but bilateral symmetry was recovered in the time-averaged velocity and
temperature fields. For Grashof numbers above ~107, the Nusselt number (overall/conductive heat transfer) increased
roughly as Gr'/°, i.e., slightly more markedly than for the previous aspect ratios and in agreement with the behaviour
expected in the separated-boundary layer regime. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction and previous work

Free convection in enclosures with internal heat
generation is encountered in a variety of fields, ranging
from the geophysics of the Earth’s mantle to the cooling
of a molten nuclear reactor core [1]. Therefore, a con-
siderable research effort, both experimental and com-
putational, has been dedicated to the phenomenon [2-5].
However, the problem is characterized by a considerable
number of variables, including the Prandtl and Grashof
numbers, the shape of the enclosure, and the thermal
boundary conditions, so that a large number of basic
configurations can be identified, each exhibiting a pe-
culiar behaviour. Only a very small portion of this
configuration space has been studied so far; in par-
ticular, for the case of low-Prandtl number fluids in
side-cooled enclosures, the only available results are
analytical (linear theory) predictions of the loss of
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stability of the base parallel flow in infinitely slender
two-dimensional slots, obtained over forty years ago by
Gershuni and co-workers and reported in their review
by Kulacki and Richards [1].

Therefore, a research programme was initiated with
the purpose of predicting flow regimes and basic heat
transfer phenomena, and of testing the applicability of
conventional turbulence models, for side-cooled, in-
ternally heated enclosures at low Pr, using direct two-
dimensional numerical simulations. The study was
initially suggested by the cooling problems encountered
in liquid metal breeder blankets for nuclear fusion power
reactors; in particular, the Prandtl number chosen
(Pr=0.0321) corresponds to a liquid metal Li—17Pb
alloy at ~300°C, of particular interest in the DEMO-
WCLL blanket design [6]. However, the results proved
to be of intrinsic interest as basic fluid dynamics.

In papers [7,8], direct numerical two-dimensional
simulations are reported for aspect ratios (height/width)
4 and 1, respectively. The Grashof number, based on the
maximum conductive temperature and on the cavity
width, ranged from ~10* to ~10°. According to the
values of AR and Gr, different regimes were predicted,
including steady-state, periodic, and chaotic flows.
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Nomenclature

AR cavity aspect ratio, height/width
(dimensionless)

D cavity width (m)

e turbulence energy normalized by U}
(dimensionless)

F frequency (s!)

f frequency normalized by 1/t (dimensionless)

g acceleration due to gravity (m s~2)

Gr  Grashof number, gfgD’/(kv?) = Ra/Pr
(dimensionless)

Gry  Grashof number based on H, AR?*Gr
(dimensionless)

k thermal conductivity (W m™! K1)

Nu;  first Nusselt number, 1/7,,.x (dimensionless)

Nu,  second Nusselt number, (2/3)/(T)
(dimensionless)

P pressure (Pa)

)4 pressure normalized by (pU(z)) (dimensionless)
Pr Prandtl number, v/« (dimensionless)
q power density (W m™)

q" heat flux (W m™2)
Ra Rayleigh number, Gr x Pr (dimensionless)
Sw wall shear stress normalized by uU,/D

(dimensionless)
t time normalized by 7, (dimensionless)
T temperature normalized by . (dimensionless)

U,V velocity components (m s™')

U, velocity scale, D/ty (m s71)

u,v  velocity components normalized by U,
(dimensionless)

X,Y coordinates (m)

x,y  coordinates normalized by D (dimensionless)

Greek symbols

o thermal diffusivity (m? s7')

p thermal expansion coefficient (K™')

9 temperature (K)

I conductive temperature scale, gD*/8k (K)

u viscosity (N' s m™2)

v kinematic viscosity (m? s~!)

p density (kg m™3)

T time (8)

Ty convective time scale, (4nv2Gr='/?)ty (s)

™ momentum diffusive time scale, D?/v (s)

14 stream function normalized by DU,
(dimensionless)

Subscripts

BV Brunt-Vaisala

c conductive

max maximum

P periodic

w wall

0 reference

For the slender enclosure (AR =4), steady-state flow
exhibiting bilateral (left-right) symmetry was predicted
for Grashof numbers up to ~2 x 103, chaotic flow for
Gr >~10°, and periodic flow in a narrow intermediate
range. The time-dependent flow field consisted of a
central sinuous rising plume and of convection rolls,
generated in the upper corners of the cavity and de-
scending along the vertical isothermal walls. Up to the
highest Grashof numbers studied the fluid motion ex-
hibited a recognizable dominating frequency, associated
with the process of roll renewal and scaling as Gr'/2,

For the square enclosure (AR =1), up to Gr ~ 107
the flow was steady and exhibited left-right symmetry.
For Gr ~ 3 x 107 symmetry was broken and asymmetric
steady-state flow patterns were obtained. For
Gr =~ 5 x 107 the asymmetric flow became time-periodic.
Finally, for Gr > 108, chaotic flow was predicted; the
time-averaged velocity and temperature fields were still
markedly asymmetric at Gr = 108, but re-attained bi-
lateral symmetry at higher Gr (10°), when developed
two-dimensional turbulence was observed.

In the present paper, the study is extended to the case
of a shallow enclosure (AR =0.25) with the same ther-
mal boundary conditions (side cooling). The Grashof

number is made to vary in the range 10° to 10'' in order
to observe the full range of flow regimes. The compu-
tational domain and the relevant nomenclature are
shown in Fig. 1, where also the location of five moni-
toring points (referred to in the following) is indicated.
The present study completes our investigation of in-
ternally heated, side-cooled enclosures at low Pr and,
hopefully, contributes to fill a gap in the existing
knowledge of confined free convection phenomena.
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Fig. 1. Sketch of the model cavity of aspect ratio 0.25 with
isothermal vertical walls and adiabatic horizontal walls. The
location of monitoring points P1-P5 is indicated.
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2. Model and numerical methods

With reference to the model problem sketched in
Fig. 1, appropriate scales were chosen for length, tem-
perature, time, velocity and pressure in order to write
the governing equations in dimensionless form; the same
approach as in [7,8] was followed. Thus, the length scale
is the width D of the enclosure, while the temperature
scale is the conductive peak temperature 9. = gD?/(8k).
As regards the frequency or time scales, by analogy with
the Brunt—Viisild frequency Fay = (gB|0v/0Y])"?/(2n)
which characterizes stably stratified flows [9], the refer-
ence frequency Fy = (gBd./D)"?/(2n) was used. The
corresponding time scale is 1o = F; !, which may be
written as 7o = (4nv2Gr ?)1y, vy = D?/v being the
momentum diffusive time scale and Gr = gfgD’/(kv*) =
Ra/Pr the Grashof number. A velocity scale coherent
with the above definitions is Uy = D/, i.e., the ratio of
length to time scales. Finally, an appropriate pressure
scale is pUZ. As confirmed a posteriori by the compu-
tational results, the above choice of scales allowed all
variables to remain of unity order throughout the range
of parameters investigated.

The two-dimensional continuity and momentum
equations, coupled with the energy transport equation
under the Boussinesq approximation, may now be
written in dimensionless form as:
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in which x=X/D, y=Y/D, u=U/U,, v="V/U,,
p="P/(pU}), T = (¥ — Yy) /Y, t = t/79. The boundary
conditions are:

u=v=0, OT/dy=0 fory=+AR/2==+1/8, (4

u=v=0, T=0 forx==l/2. (5)

The range of Grashof numbers investigated was
from 10° to 10''. For Gr < 10%, convection plays a
negligible role in the present shallow geometry, while
for Gr > 10! the explicit resolution of all energy-con-
taining spatial and temporal features of the flow would

require prohibitive computational grids and computing
times.

Egs. (1)~(3) were solved by using a finite-volume
technique based on the SIMPLEC pressure—velocity
coupling algorithm [10], Crank—Nicholson time stepping
and the central discretization scheme both for the dif-
fusion and for the advection terms. Details are given in
[1]. The AEA code CFX4 [11] was used and simulations
were run on a Pentium-II1 PC.

As will be discussed in the following sections, ac-
cording to the Grashof number the flow either attained a
steady-state configuration or exhibited periodic or cha-
otic unsteadiness. In the former case (Gr <3 x 10°) the
simulation was protracted until no significant variation
of monitored quantities was observed. This required at
most ~10 time constants 7, (defined above), the di-
mensionless settling time increasing with the Grashof
number. In all cases with time-dependent behaviour, the
flow exhibited recognizable lowest frequencies ranging
from ~1.4/1, (periodic flow obtained at Gr = 10'°) to
~0.2/1¢ (chaotic flow at Gr =3 x 10" and 10'"). Sim-
ulations were protracted in these cases for a dimen-
sionless time of ~40 to 60, so as to include (following the
initial transient) several of the corresponding periods.
One time unit 7y was resolved by 200 time steps; pre-
liminary tests showed that increasing the temporal res-
olution above this value did not change the results to
any appreciable extent.

Specific grid-independence tests were conducted for
the present geometry; typical results are reported for
the highest Gr studied (10'!) in Fig. 2. In graph (a), the
dimensionless maximum and spatially averaged tem-
peratures are plotted as functions of N, (number of
grid points along x), including results for five grids
ranging from 40 x 20 to 160 x 80 (x x y) nodes. In all
cases, the number of grid points along y was
N, = N,/2. Since the flow was time dependent (and
chaotic) at this Gr, both Ty, and (T) were time aver-
aged over an adequately long simulation time (¢ ~ 38
to 58, see Section 5). Graph (b) reports a similar
comparison for the maximum and spatially averaged
dimensionless turbulence energy e, also computed over
~20 time units. The results show that 128 x 64 nodes
ensure a satisfactory grid independence not only of
time-mean quantities but also of second-order statistics,
such as the turbulence energy. The sensitivity to the
number of grid points is even less at lower Grashof
numbers.

The results presented in the following (encompassing
steady, periodic and chaotic behaviours) were based on
computational grids including 80 x 40 (x x y) nodes for
all steady-state cases at Gr < 10%, 120 x 60 nodes for the
steady-state case at Gr = 10°, and 160 x 80 nodes for the
time-dependent cases at higher Gr. The grids were se-
lectively refined near the walls by using a hyperbolic
tangent distribution.
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Fig. 2. Grid-independence assessment: time-averaged maximum and mean temperatures (a) and maximum and mean turbulence
energies (b) in the enclosure for Gr = 10" and five computational grids of increasing density with N, = 2N,.

3. Steady-state flow

For Gr<3 x 10°, the flow settled to a steady-state
solution possessing bilateral symmetry. Fig. 3 reports
mean (a) and maximum (b) temperatures as functions of
time for Gr = 10° to 3 x 10°. The initial temperature
rate of rise in the cavity is the same at all points, and is
given, in dimensionless terms, by 0T/dt = 32nv2/
(Pry/Gr) — as can be derived from Eq. (3) for initially
negligible convection and diffusion — so that, in the
dimensionless form used here, its slope decreases as Gr
increases. At steady state, the maximum temperature is
largest for Gr = 10°, where the conductive unity value is
recovered almost exactly due to the weak influence of
convection on heat transfer. Because of the shallow
shape of the enclosure, no vertical stratification is pre-
sent in the region around the centreline, and hot fluid is
not accumulated on the top of the cavity as observed for
the former cases of AR =1 and 4 [7,8], so that T,,,x never
exceeds 1. As expected, mean temperatures in Fig. 3(a)
decrease monotonically with Gr and are ~35% of the
purely conductive value of 2/3 at Gr = 10°.
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Fig. 4 shows flow and temperature fields for the five
steady-state cases investigated. It can be observed from
the streamlines in graph (a) that the circulation cells
become more round and obliquely oriented as the
Grashof number increases. In the temperature fields (b),
the increasing influence of convection with increasing Gr
is made evident by the deformation of the isotherms.
This results in a significant vertical thermal stratifica-
tion, especially in the region between the centreline and
the wall (x = 0.25), for the higher values of Gr.

Fig. 5(a) reports profiles of the (dimensionless) ver-
tical velocity v as a function of the horizontal coordinate
x along the midline y = 0 of the enclosure for all the
steady-state cases studied. At the lowest Grashof num-
ber (10°) the v profile is flat throughout the central re-
gion —0.25 < x < 0.25. For Gr = 107, a shallow central
minimum appears in the v profile, while two upwelling
hot plumes, in which v attains maxima of ~0.7, are
formed around the locations x = £0.21. As Gr increases
further, v profiles become increasingly complex. A small
central relative maximum appears around x = 0; the
maximum positive v velocity attains a highest value of

Tmax
——Gr=1E6
————— Gr=1E7| |
; Gr=1E8
Gr=1E9
00 : ! i
0 5
(b) t

Fig. 3. Dimensionless mean (a) and maximum (b) temperatures as functions of time for four cases attaining symmetric steady-state

conditions.
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Fig. 4. Flow and temperature fields for all cases attaining symmetric steady-state conditions. (a) Streamlines (dimensionless interval
0.01); solid lines: clockwise flow; broken lines: counter-clockwise flow. (b) Isotherms (dimensionless interval 0.05).
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Fig. 5. Profiles of the dimensionless vertical velocity v along the
centreline y = 0 for the steady-state cases (Gr = 10° to 3 x 10°).

~1.2 for Gr = 10® and then decreases again, while the
corresponding peaks move toward the centre of the
cavity. However, at all Gr, the v velocity is positive
(i.e., the flow is directed upward) throughout the central
region of the enclosure, and no rotational motion
occurs. In the downcoming boundary layers peak neg-
ative velocities become largest (~—1.2) for Gr =108,
when also the distance of v peaks from the walls is
largest (~0.08 in dimensionless form).

The formation of a quasi-stagnant central region,
characterized by low values of the vertical velocity, is
peculiar to the present aspect ratio, in which the two
main circulation rolls are widely separated, and was not
observed for the previously studied values of AR (i.e., 4
and 1). On the whole, the behaviour of v profiles
suggests that higher-order harmonics progressively enter
the solution as Gr increases. The flow remains bilaterally
symmetric at all Gr.

4. Periodic flow

For a Grashof number of 10'° a perfectly time-per-
iodic solution was predicted. Fig. 6 reports the time-
dependent behaviour of vertical velocity v at points 1
and 4 (a) and of mean and maximum temperatures (b).
Following an initial transient quite similar to that re-
ported for the stationary solutions at Gr = 10% and 10°
(see Fig. 3), at t =~ 10 the flow destabilizes and results in
perfectly periodic oscillations at ¢ =~ 30. The frequency
of the oscillation is ~1.4 in dimensionless form (Fj units).
The oscillations are smoothed for the maximum tem-
perature T, in Fig. 6(b), and are almost completely
absent for the spatially averaged temperature (T').
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Fig. 6. Results for Gr = 10'° (periodic flow). Dimensionless vertical velocity v at monitoring points P1 and P4. Dimensionless mean

and maximum temperatures.

The dynamic evolution of the system towards a limit
cycle (periodic flow) is evidenced in Fig. 7(a). This re-
ports the vertical velocity v at the monitoring point 5
(located in the upper left region of the enclosure) as a
function of the vertical velocity v at point 1 (located in
the lower left region of the enclosure, see Fig. 1) during
the last stages of the initial transient and the fully de-
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Fig. 7. Plots of vertical velocity at point 5 versus vertical velocity at point 1 (see Fig. 1) for time-dependent cases (see text for details).

(a) Gr = 10" (periodic flow); (b) Gr = 3 x 10" (early chaotic flow); (c) Gr = 10" (fully chaotic flow).

plots can be regarded as simple two-dimensional sec-
tions of the trajectory described by the dynamical sys-
tem in the appropriate, multi-dimensional phase space,
and show its relaxation onto the system’s attractor (in
this case, the limit cycle characteristic of a periodic
flow). Similar graphs are reported in Figs. 7(b) and (c)
also for higher Grashof numbers, as will be discussed
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Fig. 8. Time-dependent velocity field for Gr = 10'° (periodic
flow). Only the upper left quadrant of the enclosure is shown.
The (dimensionless) time between consecutive plots is 0.1, and
the sequence shown covers ~1 period. Arrows indicate small
co-rotating vortices shed downstream along the inner edge of
the upper boundary layer.

Some significant features of the periodic time-de-
pendent flow are evidenced in Fig. 8. This reports con-
secutive velocity vector plots in the upper left quarter of
the enclosure; the snapshots are taken after the periodic

regime has already been attained and are separated by a
dimensionless time interval of ~0.1, so that the sequence
covers roughly one period. The flapping of the upper
boundary layer can be observed; it is accompanied by
the periodic formation of a re-circulation region ad-
jacent to the top wall, which is counter-rotating with
respect to the main circulation (i.e., clockwise in this left
region of the enclosure). Also the periodic generation of
small co-rotating (anti-clockwise) vortices on the inner
edge of the upper boundary layer can be observed; these
vortices (evidenced by arrows in the figure) are gener-
ated near the central rising plume and are shed towards
the walls. As previously observed, a perfect bilateral
symmetry is maintained at any instant.

This flow picture is qualitatively different from that
observed in the periodic regime for AR =4, character-
ized by the downward motion of staggered circulation
rolls, and for AR =1, characterized by the small cyclic
motion of the two main circulation rolls representing the
left-right asymmetric base flow.

Time-sequences of the temperature distribution for
the same periodic case Gr = 10'° show only few details,
since oscillations are smoothed by the high thermal
diffusivity of the liquid metal, and have not been re-
ported. Time-averaged flow and temperature fields are
reported in Fig. 9 together with results for higher Gr,
which will be discussed further on. The perfect bilateral
symmetry can be observed. The circulation intensity is
lower than that observed for the steady-state case at
Gr =3 x 10°, see Fig. 4(a), maxima of the (dimension-
less) stream function ¥ being ~0.4 against ~0.6. Tem-
perature maxima are slightly lower (0.2 against 0.25). On
the whole, however, the time-averaged flow and tem-
perature fields are quite similar to their steady-state
counterparts observed at lower Grashof numbers, and
follow the same trend.

The time-averaged profile of the vertical velocity v
along the midline y = 0 is reported in Fig. 10 together
with the results obtained for higher Grashof numbers.
This profile is similar to those obtained for the steady-
state cases, Fig. 5, and follows the same trend; it is
characterized by thin descending wall boundary layers
and by a bimodal distribution in the central rising
plume, with a relative minimum in the centre (x = 0).
The small central relative maximum observed for the
previous, steady-state, cases is now absent while small
velocity kinks appear near the edges of the rising plume.

5. Chaotic flow

For Gr =3 x 10" and 10" chaotic time-dependent
solutions were predicted.

Fig. 11(a) reports the time-dependent behaviour of
vertical velocity v at the pairs of monitoring points 1 and
2 and 3-5, symmetrically located with respect to the
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Fig. 9. Time-averaged flow and temperature fields for Gr = 10'° (periodic flow), Gr = 3 x 10'° (early chaotic flow), and Gr = 10!
(fully chaotic flow). (a) Streamlines (dimensionless interval 0.005); solid lines: clockwise flow; broken lines: counter-clockwise flow. (b)
Isotherms (dimensionless interval 0.01).

12 . . . . . cavity vertical centreline, for Gr =3 x 10'°. It can be
observed that, following an initial transient (¢ > 10 to
15), up to ¢ =~ 28 velocities at symmetric points oscillate
in an almost periodic fashion and remain strictly iden-
tical, as in the previous periodic case Gr = 10'°. How-
ever, at ¢ =~ 28 velocities like v; and vs begin to diverge
until, at 7 &~ 40, all phase correlations among them are
lost and a chaotic flow is obtained. The following os-

Gr=1810 i cillations are larger in the upper part of the cavity
Gr=1E11 (points 3-5) than in the bottom region (points 1 and 2).
A2 l— = m ™ ” The mechanism of transition from almost periodic to

chaotic flow can be appreciated also by considering

X
Fig. 7(b). Here the trajectory of the system in the plane
Fig. 10. Profiles of the dimensionless vertical velocity v along v—vs is plotted for the short time interval between
the centreline y = 0 for the time-dependent cases (Gr = 10'° to t=2234 and ¢ = 27.89 (dimensionless), encompassing

11
100. about six periods of oscillation (0.925). The shape of the
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Fig. 11. Time-dependent behaviour of the dimensionless vertical velocity v at monitoring points P1-P2 and P3-P5, showing symmetry
breaking and transition to chaotic flow. (a) Gr = 3 x 10! (early chaotic flow); (b) Gr = 10! (fully chaotic flow).
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trajectories suggests that a period doubling mechanism is
involved in the breakdown of the periodic flow and in
the consequent evolution to chaotic motion.

Time series of the vertical velocity v at monitoring
points 1 and 2 and 3-5 for Gr = 10" are reported in Fig.
11(b). In this case, following a transient of about 10 7,
units, irregular oscillations develop, which, however,
maintain the bilateral symmetry up to ¢ ~ 15. Only for
larger dimensionless times the symmetry is broken and
the time series relative to spatially symmetric points
become totally uncorrelated. Oscillations are broader
than in the previous case at Gr = 3 x 10'°, and remain
larger in the upper region of the cavity.

A time sequence of the flow field for Gr = 10" is
shown in Fig. 12(a), which reports maps of the stream
function. The dimensionless time interval between
frames is ~0.2. In the instantaneous field the bilateral
symmetry is almost completely lost and chaotic flow is
clearly indicated by the irregular shape of the stream-
lines. The top-wall boundary layers which originate
from the central rising plume separate after a short
distance from the centreline and re-attach on the top
wall close to the vertical side boundaries, thus deter-
mining counter-rotating recirculation regions of the
quasi-stagnant fluid adjacent to the top wall. The early
separation of the top-wall boundary layers is probably
due to a “rebound” effect following the high-speed im-

pact of the rising plume against the upper wall. The
stagnation regions attached to the top wall are also as-
sociated with temperature maxima, as clearly shown by
the corresponding time sequence of the temperature field
in Fig. 12(b).

Time-averaged fields for the two chaotic cases
Gr=3x 10" and Gr=10"" are shown in Fig. 9; the
left-right bilateral symmetry is clearly recovered both in
the flow field and in the temperature distribution.
Maxima of T near the top wall are still marked in the
time-averaged results, showing that recirculation regions
are stable features of the flow at all times.

Time-averaged profiles of the vertical velocity v along
the midline y = 0 for the same two chaotic cases are
reported in Fig. 10. With respect to the profiles observed
for the steady-state and periodic cases, they exhibit re-
gions of positive v velocity for x ~ +0.4 and negative v
velocity for x &~ +0.2; these features reflect the shape of
the circulation streamlines as plotted in Fig. 9. The
central rising plume remains characterized by symmetric
velocity maxima on the two sides of a central minimum.

6. Wall shear stress and heat transfer

Fig. 13 reports profiles of the wall shear stress S,
normalized by pU,/D, along the horizontal and vertical

NP

N

(a)

\Q}‘)

N

(b)

Fig. 12. Time-dependent flow and temperature fields for Gr = 10'! (fully chaotic flow). The (dimensionless) time interval between
frames is 0.2. (a) Streamlines (dimensionless interval 0.005); solid lines: clockwise flow; broken lines: counter-clockwise flow. (b)

Isotherms (dimensionless interval 0.01).
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Fig. 13. Profiles of the wall shear stress along the walls for different values of the Grashof number. S, is normalized by pU,/D. For
time-dependent cases, time averages are shown. (a) bottom wall; (b) top wall; (c) side walls (left-right average).

(thermally active) walls for different values of the
Grashof number. For time-dependent cases, time aver-
ages are shown. Due to the bilaterally symmetric nature
of the flow, only profiles relative to the right half of the
enclosure are reported.

The behaviour of Sy, along the vertical side walls, Fig.
13(c), is fairly simple. At low Gr, profiles are rather flat;
at higher Gr ( > 10°), a flat peak is associated with the
impingement of the flow on the cold side wall, and a
small region of negative values, corresponding to a
counter-rotating recirculation cell, can be observed near
the bottom corner. S, levels increase monotonically with
increasing Gr. This behaviour is substantially different
from that observed for the previous aspect ratios 4 and 1
[7,8], where a marked peak of wall shear stress was as-
sociated with the impingement of hot fluid on the ver-
tical wall.

Profiles of Sy, along the horizontal walls are more
complex. A considerable asymmetry exists between the
top and bottom walls at all Grashof numbers. For the
periodic and chaotic cases (Gr = 10'° and 10'!) the bot-
tom wall profiles, Fig. 13(a), exhibit a sharp peak near the
corner and flat, low values elsewhere; the top wall pro-
files, Fig. 13(b), show ample regions of negative stress,
associated with the separated-flow regions visible in the
stream function maps of Fig. 9(a). Levels of S,, do not
vary monotonically with Gr; on the top wall, in particu-
lar, the highest values are attained at Gr ~ 10% to 10°.

Fig. 14 reports the values of S, averaged along the
walls as functions of Gr in the whole range investigated.

o
o
o
o

‘Wall-averaged shear stress‘
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1 T : : : : T
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Sw (shear stress normalized by .U0/D)

Fig. 14. Wall shear stress, averaged along the top, bottom and
side walls and normalized by uU,/D, as a function of Gr. For
time-dependent cases, time averages are shown.

The mean value along the vertical side walls increases
monotonically with Gr following roughly a 0.25 power
law. If, following previous work [7,8], the mean side-wall
shear stress is normalized by the hydraulic scale pU}
rather than by the viscous scale uUy/D, i.e., is expressed
as a friction coefficient, then it decreases roughly as
Gr=02 less steeply than that observed for AR =4 and 1
(~Gr~'7%), and attains much lower values, e.g. ~0.3
against ~2.6 (AR =4) and ~1.7 (AR =1) in the limit of
low Gr.

The mean values for the horizontal walls, also re-
ported in Fig. 14, were computed for the right half of the
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cavity only and represent the stress exerted by the wall
on the fluid in the direction opposite to that of the
main circulation (i.e., —x for the top wall and +x for
the bottom wall). Of course, the mean values along
the whole top or bottom wall would vanish due to the
symmetric nature of the flow (at least in the time aver-
ages). The mean S, computed along the bottom wall
increases monotonically with Gr like that computed
along the side wall, but less rapidly. That computed
along the fop wall attains a maximum at Gr = 10% ~ 10°,
as commented above in discussing the corresponding
profiles, and decreases at higher Gr (corresponding to
time-dependent flow) due to the influence of the large
recirculation regions adjacent to the upper boundary of
the enclosure.

Fig. 15 reports profiles of the wall heat flux ¢” for all
cases investigated; time averages are shown in the case of
time-dependent solutions. Values are normalized by the
mean heat flux ¢D/2.

The trend exhibited by the ¢” distributions is similar
to that discussed for higher values of AR [7,8]; profiles
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Fig. 15. Profiles of the wall heat flux ¢” along the vertical walls
for different values of the Grashof number. ¢” is normalized by

its mean value ¢D/2. For time-dependent cases, time averages
are shown.
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are rather flat at the lowest Grashof numbers, when
convection is negligible, while a larger non-uniformity
occurs at higher Gr. Peak values (~1.7) are obtained for
the chaotic flow case at Gr = 10" in the upper corner
regions, where the hot fluid advected by the upper
horizontal boundary layers meets the cold vertical walls.
Asin the case AR =1, and unlike in the case AR =4, no
uniform-¢” region is observed near the midplane y = 0.

The two Nusselt numbers Nu; and Nu, are reported
as functions of the Grashof number in Fig. 16. For
comparison purposes, this includes also the results ob-
tained in the previous work for AR =4 and 1.

For the present AR, the first Nusselt number, based
on maximum temperature, attains values around 1 (pure
conduction) for the lower Grashof numbers (Gr = 106,
107); unlike in the AR =4 and 1 cases, values of Nu
below 1 are not observed. The transition to chaotic flow
at Gr =1~ 3 x 10" is clearly associated with a reduc-
tion in the rate of increase of Nu;. The second Nusselt
number, obtained from the average temperature, in-
creases more regularly and follows roughly a power law
Nu, = constant Gr'/* in the range Gr > 107; this slope is
slightly higher than that obtained for the previous AR
values of 4 and 1 (~1/7 and ~1/6, respectively). Signif-
icant convective heat transfer (Nu; = 3.74, Nu, =~ 3.32) is
obtained for Gr = 3 x 10°, still within the steady-state
range.

As a first remark, the Nu versus Gr dependence ap-
pears to be much similar for all values of AR, showing
that Gr (based on cavity width) accounts for most of the
variations in Nu while the independent influence of AR
is but marginal. The discrepancy observed at interme-
diate values of Gr (107 ~ 10®%) is mainly due to the dif-
ferent values of Gr at which transitions between flow
regimes occur in enclosures with different AR, see below.

It should be observed that the relation Nu =
constant Gr'/>, taking account of the definition of the
Grashof number as proportional to D°, simply expresses

10 T T T T T T T

—m— AR=4
-- @ AR=1 A
A AR=0.25 A

10 10 10 10° 10 10° 10"
(b) Gr

Fig. 16. Behaviours of the Nusselt numbers Nu; = 1/, (a) and Nu, = (2/3)/(T) (b) as functions of the Grashof number for AR =4,

1, and 0.25.
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the fact that Nu = constantD, i.e., that the heat transfer
coefficient # = Nuk/D does not depend upon the enclo-
sure lateral size D, as expected in the separated-bound-
ary layer regime in any confined free convection problem
(for example, the same 1/5-power dependence is reported
[1] for a similar configuration but higher Pr). Similar
remarks hold for the Nu = constant Gr'/*> dependence in
the case of differentially heated enclosures. Curiously,
not all authors highlight this simple meaning of the
power-law Nu—Gr relationships as it deserves.

7. Influence of the aspect ratio on flow stability

As discussed above, heat transfer depends mainly on
the Grashof number Gr based on the cavity width D,
and only marginally on the aspect ratio. On the other
hand, an overall comparison of the present findings for
AR =0.25 with previous results for AR =4 and 1 [7,8]
shows that the transitions to time-dependent and chaotic
flow occur at broadly different values of Gr, indicating a
strong influence of the aspect ratio. Fig. 17 reports the
(approximate) critical Grashof number for transition
from steady-state to periodic flow as a function of AR.
The asymptotic linear stability results for an infinitely
slender enclosure [1] and the present Prandtl number of
0.0321 are also included. It can be observed that the
results for AR =4, 1, and 0.25 are roughly aligned in a
doubly logarithmic graph and follow an AR™*° power
law. The value obtained for AR =4 (Gr ~ 2.8 x 10%) is
close to that (~10°) deduced from the linear stability
analysis in [1]. No comparable results are available in
the literature for the opposite case of an infinitely shal-
low enclosure cooled from the sides (AR — 0, question
marks in the graph), but it can be inferred on physical
grounds that the critical Grashof number for loss of
stability of the base steady-state solution must diverge.

Since, up to AR ~ 4, the marginal stability curve in
Fig. 17 exhibits a slope close to —3, it may be concluded
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Fig. 17. Limit curve for transition from steady-state to time-
dependent flow in the AR-Gr plane.
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Fig. 18. Summary map of flow regimes for three values of the
aspect ratio. The horizontal axis reports Gry = Gr x AR?, i.e
the Grashof number based on maximum conductive tempera-
ture and cavity height.

that in this range the transition to time-dependent flow is
governed mainly by the Grashof number based on
maximum conductive temperature and cavity height,
Gry = AR*Gr, with only a minor residual influence of
AR. Fig. 18 reports a schematic flow regime map as a
function of Gry and AR; dashed lines indicate the test
cases for which direct numerical simulations were per-
formed, and different flow regimes (symmetric steady-
state, asymmetric steady-state, periodic, and chaotic) are
visualized by different shadings. Transition to periodic
flow occurs at Gry ~ 2 x 107 for AR =4, Gry ~ 4 x 107
for AR =1 and Gry =~ 10® for AR =0.25. Transition to
chaotic motion occurs at Gry ~ 6 x 107 for AR =4,
Gru =~ 10® for AR =1 and Gry ~ 3 x 10® for AR =0.25.
The transition from symmetric to asymmetric steady
states occurs at Gry ~ 2 x 107 only for AR = 1 and does
not occur at other aspect ratios. A further transition [8],
predicted for the square enclosure only (i.e., that from
chaotic flow with asymmetric time averages to chaotic
flow with symmetric time averages), is not reported for
the sake of simplicity.

However, from the asymptotic behaviour in Fig. 17 it
is clear that the dependency of transitions upon Gry is
not a universal feature of the flow and cannot be ex-
tended to high values of the aspect ratio (AR > 4).

8. Conclusions

Numerical simulations were conducted for an in-
ternally heated rectangular enclosure at AR =0.25 and
Gr ranging from 10° to 10''. The Prandtl number was
0.0321. A sequence of different flow regimes from steady
laminar to periodic and chaotic was clearly identified.

In this shallow cavity, transition from steady to
periodic flow occurred at a relatively high Gr (3 x
10°-10') and resulted in a regular flapping motion of
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the horizontal top-wall boundary layers, in the outward
travelling-wave motion of flow disturbances (secondary
rolls) along their inner edges, and in a pulsatile beha-
viour of the flow rate in the central rising plume. The
periodic flow was bilaterally symmetric at all instants.

Chaotic flow was predicted at Gr > 3 x 10'°; while
the general features of the secondary flow were similar to
those observed for the periodic case, flow oscillations
were now irregular and instantaneously asymmetric in
the left and right halves of the cavity. Transition to
chaotic flow appeared to be associated with a loss of
stability of the central rising plume, which started to
oscillate thus breaking the instantaneous symmetry of
the flow field. However, long-term time averages main-
tained bilateral symmetry.

The present paper concludes our study on low-
Prandtl number free convection in two-dimensional, in-
ternally heated rectangular enclosures. Future work will
address the influence of Prandtl number, three-dimen-
sionality, and additional body forces such as produced
by magnetohydrodynamic interactions.
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